Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brunel University Lo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Radiation and Plasma Medical Sciences
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brunel University Research Archive
Article . 2024
License: CC BY NC ND
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Semi-Supervised 3-D Medical Image Segmentation Using Multiconsistency Learning With Fuzzy Perception-Guided Target Selection

Authors: Tao Lei; Wenbiao Song; Weichuan Zhang; Xiaogang Du; Chenxia Li; Lifeng He; Asoke K. Nandi;

Semi-Supervised 3-D Medical Image Segmentation Using Multiconsistency Learning With Fuzzy Perception-Guided Target Selection

Abstract

Semi-supervised learning methods based on the mean teacher model have achieved great success in the field of 3D medical image segmentation. However, most of the existing methods provide auxiliary supervised signals only for reliable regions, but ignore the effect of fuzzy regions from unlabeled data during the process of consistency learning, which results in the loss of more valuable information. Besides, some of these methods only employ multi-task learning to improve models’ performance, but ignore the role of consistency learning between tasks and models, thereby weakening geometric shape constraints. To address the above issues, in this paper, we propose a semi-supervised 3D medical image segmentation framework with multi-consistency learning for fuzzy perception-guided target selection. First, we design a fuzzy perception-guided target selection strategy from multiple perspectives and adopt the fusion method of fuzziness minimization and the fuzzy map momentum update to obtain a fuzzy region. By incorporating the fuzzy region into consistency learning, our model can effectively exploit more useful information from the fuzzy region of unlabeled data. Second, we design a multi-consistency learning strategy that employs intra-task and inter-model mutual consistency learning as well as cross-model cross-task consistency learning to effectively learn the shape representation of fuzzy regions. The strategy can encourage the model to agree on predictions for different tasks in fuzzy regions. Experiments demonstrate that the proposed framework outperforms the current mainstream methods on two popular 3D medical datasets, the left atrium segmentation dataset, and the brain tumor segmentation dataset. The code will be released at: https://github.com/SUST-reynole. 10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 62201334 and 62271296); Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant Number: 23JP014 and 23JP022).

Related Organizations
Keywords

semi-supervised learning, medical image segmentation, fuzzy estimation, consistency learning, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid