
handle: 2117/426620
We give a short proof of the fact that the number of labelled trees on $n$ vertices is $n^{n-2}$. Although many short proofs are known, we have not seen this one before.
2 pages
Graph theory, Combinatorial analysis, Combinacions (Matemàtica), Classificació AMS::05 Combinatorics::05A Enumerative combinatorics, Grafs, Teoria de, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, Probability (math.PR), FOS: Mathematics, Mathematics - Combinatorics, Classificació AMS::05 Combinatorics::05C Graph theory, Combinatorics (math.CO), Mathematics - Probability
Graph theory, Combinatorial analysis, Combinacions (Matemàtica), Classificació AMS::05 Combinatorics::05A Enumerative combinatorics, Grafs, Teoria de, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, Probability (math.PR), FOS: Mathematics, Mathematics - Combinatorics, Classificació AMS::05 Combinatorics::05C Graph theory, Combinatorics (math.CO), Mathematics - Probability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
