Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neural Processing Le...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neural Processing Letters
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Objective Memetic Algorithms with Tree-Based Genetic Programming and Local Search for Symbolic Regression

Authors: Jiayu Liang; Yu Xue 0003;

Multi-Objective Memetic Algorithms with Tree-Based Genetic Programming and Local Search for Symbolic Regression

Abstract

Symbolic regression is to search the space of mathematical expressions to find a model that best fits a given dataset. As genetic programming (GP) with the tree representation can represent solutions as expression trees, it is popularly-used for regression. However, GP tends to evolve unnecessarily large programs (known as bloat), causing excessive use of CPU time/memory and evolving solutions with poor generalization ability. Moreover, even though the importance of local search has been proved in augmenting the search ability of GP (termed as memetic algorithms), local search is underused in GP-based methods. This work aims to handle the above problems simultaneously. To control bloat, a multi-objective (MO) technique (NSGA-II, Non-dominant Sorting Genetic Algorithm) is selected to incorporate with GP, forming a multi-objective GP (MOGP). Moreover, three mutation-based local search operators are designed and incorporated with MOGP respectively to form three multi-objective memetic algorithms (MOMA), i.e. MOMA_MR (MOMA with Mutation-based Random search), MOMA_MF (MOMA with Mutation-based Function search) and MOMA_MC (MOMA with Mutation-based Constant search). The proposed methods are tested on both benchmark functions and real-world applications, and are compared with both GP-based (i.e. GP and MOGP) and nonGP-based symbolic regression methods. Compared with GP-based methods, the proposed methods can reduce the risk of bloat with the evolved solutions significantly smaller than GP solutions, and the local search strategies introduced in the proposed methods can improve their search ability with the evolved solutions dominating MOGP solutions. In addition, among the three proposed methods, MOMA_MR performs best in RMSE for testing, yet it consumes more training time than others. Moreover, compared with six reference nonGP-based symbolic regression methods, MOMA_MR generally performs better than or similar to them consistently.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!