Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
SIAM Journal on Matrix Analysis and Applications
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC ND
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computing Accurate Eigenvalues using a Mixed-Precision Jacobi Algorithm

Authors: Nicholas J. Higham; Françoise Tisseur; Marcus Webb; Zhengbo Zhou;

Computing Accurate Eigenvalues using a Mixed-Precision Jacobi Algorithm

Abstract

We provide a rounding error analysis of a mixed-precision preconditioned Jacobi algorithm, which uses low precision to compute the preconditioner, applies it at high precision (amounting to two matrix-matrix multiplications) and solves the eigenproblem using the Jacobi algorithm at working precision. Our analysis yields meaningfully smaller relative forward error bounds for the computed eigenvalues compared with those of the Jacobi algorithm. We further prove that, after preconditioning, if the off-diagonal entries of the preconditioned matrix are sufficiently small relative to its smallest diagonal entry, the relative forward error bound is independent of the condition number of the original matrix. We present two constructions for the preconditioner that exploit low precision, along with their error analyses. Our numerical experiments confirm our theoretical results and compare the relative forward error of the proposed algorithm with the Jacobi algorithm, a preconditioned Jacobi algorithm, and MATLAB's $\texttt{eig}$ function. Timings using Julia suggest that the dominant cost of obtaining this level of accuracy comes from the high precision matrix-matrix multiplies; if support in software or hardware for this were improved, then this would become a negligible cost.

27 pages

Related Organizations
Keywords

Numerical Analysis, precondition, Jacobi eigenvalue algorithm, spectral decomposition, FOS: Mathematics, high relative accuracy, Numerical Analysis (math.NA), Mixed-precision algorithm, Symmetric eigenvalue problem, rounding error analysis, condition number, 15A18, 65F08, 65F15

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green