
Abstract The Learning-With-Errors (LWE) problem is a fundamental computational challenge with implications for post-quantum cryptography and computational learning theory. Here we propose a quantum-classical hybrid algorithm with Ising model to address LWE, transforming it into the Shortest Vector Problem and using variable qubits to encode lattice vectors into an Ising Hamiltonian. By identifying low-energy Hamiltonian levels, the solution is extracted, making the method suitable for noisy intermediate-scale quantum devices. The required number of qubits is less than m(m + 1), where m is the number of samples. Our heuristic algorithm’s time complexity depends on the specific quantum eigensolver used to find low-energy levels, and the performance when using the Quantum Approximate Optimization Algorithm is investigated. We validate the algorithm by solving a 2-dimensional LWE problem on a 5-qubit quantum device, demonstrating its potential for solving meaningful LWE instances on near-term quantum devices.
QB460-466, Physics, QC1-999, Astrophysics
QB460-466, Physics, QC1-999, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
