
Lack of I/O scalability is known to cause measurable slowdowns for large-scale scientific applications running on high end machines. This is prompting researchers to devise 'I/O staging' methods in which outputs are processed via online analysis and visualization methods to support desired science outcomes. Organized as online workflows and carried out in I/O pipelines, these analysis components run concurrently with science simulations, often using a smaller set of nodes on the high end machine termed 'staging areas'. This paper presents a new approach to dealing with several challenges arising for such online analytics, including: how to efficiently run multiple analytics components on staging area resources providing them with the levels of end-to-end performance they need and how to manage staging resources when analytics actions change due to user or data-dependent behavior. Our approach designs and implements middleware constructs that delineate and manage I/O pipeline resources called 'I/O Containers'. Experimental evaluations of containers with realistic scientific applications demonstrate the feasibility and utility of the approach.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
