Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal RESTI (Rekaya...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancing Stroke Prediction with Logistic Regression and Support Vector Machine Using Oversampling Techniques

Authors: Risal, Syamsul; Fajar Apriyadi; A. Sumardin; Andini Dani Achmad; Annisa Nurul Puteri;

Enhancing Stroke Prediction with Logistic Regression and Support Vector Machine Using Oversampling Techniques

Abstract

Stroke is a significant health concern that can result in both death and disability, making the early identification of risk factors crucial. Previous studies on stroke prediction have been limited by inadequate handling of class imbalance, lack of comprehensive feature selection, and parameter optimization, with accuracy rates usually below 80%. This study compares the performance of Logistic Regression (LR) and Support Vector Machine (SVM) algorithms combined with different oversampling methods—SMOTE, Borderline-SMOTE, ADASYN, Random Over Sampling (ROS), and Random Under Sampling (RUS)—on a stroke prediction dataset. Correlation-based feature selection identified age, hypertension, and heart disease as significant predictors. GridSearchCV with 10-fold cross-validation was used for hyperparameter optimization, and performance was evaluated using precision, recall, accuracy, and ROC curves. The results showed that SVM significantly outperformed Logistic Regression across all sampling methods. SVM+ROS achieved the highest performance with perfect recall (100%), precision of 97.18%, and accuracy of 98.56% (AUC: 0.9857), whereas SVM + Borderline-SMOTE offered balanced performance with a recall of 94.99%, precision of 95.06%, and accuracy of 95.17% (AUC: 0.9512). LR + Borderline-SMOTE performed the best with an accuracy of 84.98% (AUC: 0.8503), significantly better than previous studies. This improved accuracy shows significant clinical benefits, potentially reducing missed stroke diagnoses by identifying thousands of additional at-risk patients in large-scale screening programs. Healthcare providers should consider implementing SVM with ROS in critical care settings, where potentially missed stroke cases have severe consequences. Simultaneously, SVM with Borderline-SMOTE may be more appropriate for resource-constrained environments.

Keywords

TA168, machine learning, stroke disease, logistic regression, grid search cross-validation, support vector machine, Information technology, T58.5-58.64, Systems engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold