Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/5y...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/zd...
Other literature type . 2022
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Smart Assistive System for Visually Impaired People Obstruction Avoidance Through Object Detection and Classification

النظام المساعد الذكي لضعاف البصر تجنب العوائق من خلال الكشف عن الأشياء وتصنيفها
Authors: Usman Masud; Tareq Saeed; Hunida Malaikah; Fezan ul Islam; Ghulam Abbas;

Smart Assistive System for Visually Impaired People Obstruction Avoidance Through Object Detection and Classification

Abstract

Les progrès récents en matière d'innovation rendent la vie prospère, plus simple et plus facile pour les individus ordinaires. Les statistiques de l'Organisation mondiale de la santé (OMS) indiquent qu'un grand nombre de personnes souffrent de pertes visuelles, à cause desquelles elles rencontrent de nombreuses difficultés dans leurs emplois quotidiens. Par conséquent, notre objectif est de structurer un cadre modeste, sécurisé, portable et polyvalent pour les malvoyants afin de les aider dans leurs routines quotidiennes. Pour cela, le plan est de créer un système efficace qui aidera les personnes malvoyantes grâce à la détection d'obstacles et à la classification des scènes. La méthodologie proposée utilise le Raspberry-Pi 4B, la caméra, le capteur à ultrasons et l'Arduino, montés sur le bâton de l'individu. Nous prenons des photos de la scène, puis les pré-traitons à l'aide de Viola Jones et de l'algorithme de détection d'objets TensorFlow. Lesdites techniques sont utilisées pour détecter des objets. Nous avons également utilisé un capteur à ultrasons monté sur un servomoteur pour mesurer la distance entre la personne aveugle et les obstacles. La recherche présentée utilise des calculs simples pour son exécution et détecte les obstructions avec une efficacité particulièrement élevée. Comparé à différents cadres, ce cadre est un effort minimal, pratique et simple à porter.

El progreso reciente en la innovación está haciendo que la vida prospere, sea más simple y más fácil para el individuo común. Las estadísticas de la Organización Mundial de la Salud (OMS) indican que una gran cantidad de personas experimentan pérdidas visuales, por lo que encuentran muchas dificultades en los trabajos cotidianos. Por lo tanto, nuestro objetivo es estructurar un marco modesto, seguro, portátil y versátil para personas con discapacidad visual para ayudarles en sus rutinas diarias. Para ello, el plan es hacer un sistema eficaz que ayude a las personas con discapacidad visual a través de la detección de obstáculos y la clasificación de escenas. La metodología propuesta utiliza Raspberry-Pi 4B, cámara, sensor ultrasónico y Arduino, montados en el palo del individuo. Tomamos fotos de la escena y luego las preprocesamos con la ayuda de Viola Jones y el algoritmo de detección de objetos TensorFlow. Dichas técnicas se utilizan para detectar objetos. También utilizamos un sensor ultrasónico montado en un servomotor para medir la distancia entre la persona ciega y los obstáculos. La investigación presentada utiliza cálculos simples para su ejecución y detecta las obstrucciones con una eficiencia notablemente alta. Cuando se contrasta con diferentes marcos, este marco es un esfuerzo mínimo, conveniente y fácil de usar.

Recent progress in innovation is making the life prosper, simpler and easier for common individual. The World Health Organization (WHO) statistics indicate that a large amount of people experience visual losses, because of which they encounter many difficulties in everyday jobs. Hence, our goal is to structure a modest, secure, wearable, and versatile framework for visually impaired to help them in their daily routines. For this, the plan is to make an effective system which will assist visually impaired people through obstacle detection and scenes classification. The proposed methodology utilizes Raspberry-Pi 4B, Camera, Ultrasonic Sensor and Arduino, mounted on the stick of the individual. We take pictures of the scene and afterwards pre-process these pictures with the help of Viola Jones and TensorFlow Object Detection algorithm. The said techniques are used to detect objects. We also used an ultrasonic sensor mounted on a servomotor to measure the distance between the blind person and obstacles. The presented research utilizes simple calculations for its execution, and detects the obstructions with a notably high efficiency. When contrasted with different frameworks, this framework is a minimal effort, convenient, and simple to wear.

التقدم الأخير في الابتكار يجعل الحياة مزدهرة وأبسط وأسهل للفرد العادي. تشير إحصاءات منظمة الصحة العالمية (WHO) إلى أن عددًا كبيرًا من الأشخاص يعانون من فقدان البصر، وبسبب ذلك يواجهون العديد من الصعوبات في الوظائف اليومية. وبالتالي، فإن هدفنا هو بناء إطار متواضع وآمن وقابل للارتداء ومتعدد الاستخدامات لضعاف البصر لمساعدتهم في روتينهم اليومي. لهذا الغرض، تتمثل الخطة في إنشاء نظام فعال يساعد الأشخاص ضعاف البصر من خلال اكتشاف العوائق وتصنيف المشاهد. تستخدم المنهجية المقترحة Raspberry - Pi 4B وكاميرا ومستشعر بالموجات فوق الصوتية وأردوينو، مثبتة على عصا الفرد. نلتقط صورًا للمشهد ثم نقوم بعد ذلك بمعالجة هذه الصور مسبقًا بمساعدة فيولا جونز وخوارزمية الكشف عن الأجسام TensorFlow. تُستخدم التقنيات المذكورة للكشف عن الأشياء. كما استخدمنا جهاز استشعار بالموجات فوق الصوتية مثبت على محرك مؤازر لقياس المسافة بين الشخص الأعمى والعقبات. يستخدم البحث المقدم حسابات بسيطة لتنفيذه، ويكتشف العوائق بكفاءة عالية بشكل ملحوظ. عندما يتناقض هذا الإطار مع الأطر المختلفة، يكون الحد الأدنى من الجهد ومريحًا وسهل الارتداء.

Keywords

tensorflow, Visual Tracking, Artificial intelligence, Support vector machine, Object detection, Cognitive Neuroscience, FOS: Political science, Internet of Things, FOS: Law, Automated Currency Recognition and Authentication, Smart system, Viola Jones, Pattern recognition (psychology), object recognition, Visual Object Tracking and Person Re-identification, biomedical sensor, visual losses, Arduino, Visually Impaired, Embedded system, Political science, Human–computer interaction, Visually impaired, Obstacle, AdaBoost, Raspberry pi, Life Sciences, Wearable computer, Servomotor, Computer science, Tactile Perception and Cross-modal Plasticity, TK1-9971, Process (computing), Object Tracking, Operating system, Computer Science, Physical Sciences, Multiple Object Tracking, Computer vision, Object (grammar), Electrical engineering. Electronics. Nuclear engineering, Computer Vision and Pattern Recognition, Sensory Substitution, Law, Neuroscience

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 1%
Top 10%
Top 1%
gold