
arXiv: 2503.06077
The optimization of multi-user multi-input multi-output (MU-MIMO) precoders is a widely recognized challenging problem. Existing work has demonstrated the potential of graph neural networks (GNNs) in learning precoding policies. However, existing GNNs often exhibit poor generalizability for the numbers of users or antennas. In this paper, we develop a gradient-driven GNN design method for the learning of fully digital and hybrid precoding policies. The proposed GNNs leverage two kinds of knowledge, namely the gradient of signal-to-interference-plus-noise ratio (SINR) to the precoders and the permutation equivariant property of the precoding policy. To demonstrate the flexibility of the proposed method for accommodating different optimization objectives and different precoding policies, we first apply the proposed method to learn the fully digital precoding policies. We study two precoder optimization problems for spectral efficiency (SE) maximization and log-SE maximization to achieve proportional fairness. We then apply the proposed method to learn the hybrid precoding policy, where the gradients to analog and digital precoders are exploited for the design of the GNN. Simulation results show the effectiveness of the proposed methods for learning different precoding policies and better generalization performance to the numbers of both users and antennas compared to baseline GNNs.
Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
