
handle: 11570/3309109 , 20.500.11769/649830
Accidents near ports have increased due to the ongoing expansion of maritime trade. These accidents have various causes, including adverse weather conditions. Accurate wave climate forecasts can help mitigate the risks associated with marine accidents. While numerical models are commonly used for obtaining nearshore wave climate forecasts, their high computational cost makes them impractical for wave climate forecasting and nowcasting. Artificial neural networks (ANNs) offer a potential solution to this limitation. However, existing ANNs have primarily focused on specific single points within the study areas, such as piers and port entrances. Enhancing early-warning strategies requires a broader understanding of the wave climate across larger areas. Thorough examinations of extensive areas with varying physical attributes can result in significant computational time requirements. The main objective of this study is to evaluate a clustering technique able to identify homogeneous areas to improve future applications of ANNs to assess nearshore wave characteristics in actual situations. The area around the port of Augusta (Sicily), one of the most important ports in Italy, serves as a case study in this article. Results show an optimal performance by applying the clustering algorithm K-means, capable of capturing the wave climate characteristics of the study area.
Seaports, Meteorology, Clustering algorithms, SWAN, Numerical models, Sea measurements, Accidents, wave climate, K-means, Partitioning algorithms, maritime accidents
Seaports, Meteorology, Clustering algorithms, SWAN, Numerical models, Sea measurements, Accidents, wave climate, K-means, Partitioning algorithms, maritime accidents
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
