Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An efficient native function interface for Java

Authors: Matthias Grimmer; Manuel Rigger; Lukas Stadler; Roland Schatz; Hanspeter Mössenböck;

An efficient native function interface for Java

Abstract

We present an efficient and dynamic approach for calling native functions from within Java. Traditionally, programmers use the Java Native Interface (JNI) to call such functions. This paper introduces a new mechanism which we tailored specifically towards calling native functions from Java. We call it the Graal Native Function Interface (GNFI). It is faster than JNI in all relevant cases and more flexible because it avoids the JNI boiler-plate code.GNFI enables the user to directly invoke native code from Java applications. We describe how GNFI creates call stubs for native functions that a just-in-time (JIT) compiler can optimize and how we embed these stubs into Java code. We introduce different approaches for calling native functions from within compiled and interpreted Java code. In particular, we describe how our approach embeds the call stubs into a Java application so that the JIT-compiled code consists of a direct call to a native function.We evaluate the call overhead of GNFI. The measurements demonstrate a significant performance advantage of GNFI compared to JNI and the Java Native Access (JNA). Also, we evaluate our approach against JNI and JNA on a jblas matrix multiplication benchmark. The evaluation shows that GNFI outperforms JNI and JNA in compiled and interpreted mode by a factor of 1.9 in the best case.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!