Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How to Relax Instantly: Elastic Relaxation of Concurrent Data Structures

Authors: Kåre von Geijer; Philippas Tsigas;

How to Relax Instantly: Elastic Relaxation of Concurrent Data Structures

Abstract

The sequential semantics of many concurrent data structures, such as stacks and queues, inevitably lead to memory contention in parallel environments, thus limiting scalability. Semantic relaxation has the potential to address this issue, increasing the parallelism at the expense of weakened semantics. Although prior research has shown that improved performance can be attained by relaxing concurrent data structure semantics, there is no one-size-fits-all relaxation that adequately addresses the varying needs of dynamic executions. In this paper, we first introduce the concept of elastic relaxation and consequently present the Lateral structure, which is an algorithmic component capable of supporting the design of elastically relaxed concurrent data structures. Using the Lateral , we design novel elastically relaxed, lock-free queues and stacks capable of reconfiguring relaxation during run time. We establish linearizability and define upper bounds for relaxation errors in our designs. Experimental evaluations show that our elastic designs hold up against state-of-the-art statically relaxed designs, while also swiftly managing trade-offs between relaxation and operational latency. We also outline how to use the Lateral to design elastically relaxed lock-free counters and deques.

Related Organizations
Keywords

FOS: Computer and information sciences, D.1.3, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, D.1.3; E.1, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC), E.1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green