Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dual-Population Cooperative Correlation Evolutionary Algorithm for Constrained Multi-Objective Optimization

Authors: Junming Chen; Yanxiu Wang; Zichun Shao; Hui Zeng; Siyuan Zhao;

Dual-Population Cooperative Correlation Evolutionary Algorithm for Constrained Multi-Objective Optimization

Abstract

When addressing constrained multi-objective optimization problems (CMOPs), the key challenge lies in achieving a balance between the objective functions and the constraint conditions. However, existing evolutionary algorithms exhibit certain limitations when tackling CMOPs with complex feasible regions. To address this issue, this paper proposes a constrained multi-objective evolutionary algorithm based on a dual-population cooperative correlation (CMOEA-DCC). Under the CMOEA-DDC framework, the system maintains two independently evolving populations: the driving population and the conventional population. These two populations share information through a collaborative interaction mechanism, where the driving population focuses on objective optimization, while the conventional population balances both objectives and constraints. To further enhance the performance of the algorithm, a shift-based density estimation (SDE) method is introduced to maintain the diversity of solutions in the driving population, while a multi-criteria evaluation metric is adopted to improve the feasibility quality of solutions in the normal population. CMOEA-DDC was compared with seven representative constrained multi-objective evolutionary algorithms (CMOEAs) across various test problems and real-world application scenarios. Through an in-depth analysis of a series of experimental results, it can be concluded that CMOEA-DDC significantly outperforms the other competing algorithms in terms of performance.

Related Organizations
Keywords

evolutionary algorithm, QA1-939, constrained multi-objective optimization, dual population, cooperative correlation, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold