
doi: 10.3390/math13091441
When addressing constrained multi-objective optimization problems (CMOPs), the key challenge lies in achieving a balance between the objective functions and the constraint conditions. However, existing evolutionary algorithms exhibit certain limitations when tackling CMOPs with complex feasible regions. To address this issue, this paper proposes a constrained multi-objective evolutionary algorithm based on a dual-population cooperative correlation (CMOEA-DCC). Under the CMOEA-DDC framework, the system maintains two independently evolving populations: the driving population and the conventional population. These two populations share information through a collaborative interaction mechanism, where the driving population focuses on objective optimization, while the conventional population balances both objectives and constraints. To further enhance the performance of the algorithm, a shift-based density estimation (SDE) method is introduced to maintain the diversity of solutions in the driving population, while a multi-criteria evaluation metric is adopted to improve the feasibility quality of solutions in the normal population. CMOEA-DDC was compared with seven representative constrained multi-objective evolutionary algorithms (CMOEAs) across various test problems and real-world application scenarios. Through an in-depth analysis of a series of experimental results, it can be concluded that CMOEA-DDC significantly outperforms the other competing algorithms in terms of performance.
evolutionary algorithm, QA1-939, constrained multi-objective optimization, dual population, cooperative correlation, Mathematics
evolutionary algorithm, QA1-939, constrained multi-objective optimization, dual population, cooperative correlation, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
