Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/focs57...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow

Authors: Brand, Jan van den; Chen, Li; Kyng, Rasmus; Liu, Yang P.; Peng, Richard; Gutenberg, Maximilian Probst; Sachdeva, Sushant; +1 Authors

A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow

Abstract

We give a deterministic $m^{1+o(1)}$ time algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with $m$ edges and polynomially bounded integral demands, costs, and capacities. As a consequence, we obtain the first running time improvement for deterministic algorithms that compute maximum-flow in graphs with polynomial bounded capacities since the work of Goldberg-Rao [J.ACM '98]. Our algorithm builds on the framework of Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva [FOCS '22] that computes an optimal flow by computing a sequence of $m^{1+o(1)}$-approximate undirected minimum-ratio cycles. We develop a deterministic dynamic graph data-structure to compute such a sequence of minimum-ratio cycles in an amortized $m^{o(1)}$ time per edge update. Our key technical contributions are deterministic analogues of the vertex sparsification and edge sparsification components of the data-structure from Chen et al. For the vertex sparsification component, we give a method to avoid the randomness in Chen et al. which involved sampling random trees to recurse on. For the edge sparsification component, we design a deterministic algorithm that maintains an embedding of a dynamic graph into a sparse spanner. We also show how our dynamic spanner can be applied to give a deterministic data structure that maintains a fully dynamic low-stretch spanning tree on graphs with polynomially bounded edge lengths, with subpolynomial average stretch and subpolynomial amortized time per edge update.

Accepted to FOCS 2023

Keywords

FOS: Computer and information sciences, Optimization and Control (math.OC), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Data Structures and Algorithms (cs.DS), Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green