Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rolling Bearing Fault Diagnosis Based on Optimized VMD and SSAE

Authors: Baoxian Chang; Xing Zhao; Dawei Guo; Siyu Zhao; Jiyou Fei;

Rolling Bearing Fault Diagnosis Based on Optimized VMD and SSAE

Abstract

The monitoring and fault diagnosis of axle-box bearings in high-speed trains is crucial for ensuring safe train operations. The vibration signals of these bearings exhibit non-stationary and non-linear characteristics. To further enhance the accuracy of identifying rolling bearing faults, a fault diagnosis method is proposed. This method is based on the improved Dung Beetle Optimization (DBO) algorithm for optimizing Variational Mode Decomposition (VMD) combined with Stacked Sparse Autoencoder (SSAE). Firstly, the DBO algorithm is enhanced to improve its optimization precision and global optimization capability. It is then utilized for the adaptive selection of two parameters: the number of decomposition modes and the penalty factor in VMD. These improvements address issues such as mode mixing, signal loss, and excessive decomposition, which arise from poor parameter selection in the traditional VMD method. Subsequently, components of Intrinsic Mode Functions (IMFs) that are highly correlated with the original signal are selected. The time-domain and frequency-domain features of these IMF components are used to construct the dataset. The feature set is then inputted into the deep machine learning model SSAE for training and testing. Through diagnostic experiments on various types and levels of rolling bearing faults, the model demonstrates a higher rate of fault diagnosis recognition.

Related Organizations
Keywords

Bearing fault diagnosis, stacked sparse autoencoders, Electrical engineering. Electronics. Nuclear engineering, variational modal decomposition, dung beetle optimization algorithm, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold