Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neural Computing and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neural Computing and Applications
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://dx.doi.org/10.60692/tm...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/cr...
Other literature type . 2023
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

An efficient edge/cloud medical system for rapid detection of level of consciousness in emergency medicine based on explainable machine learning models

نظام طبي سحابي فعال للكشف السريع عن مستوى الوعي في طب الطوارئ بناءً على نماذج التعلم الآلي القابلة للتفسير
Authors: Nora El-Rashidy; Ahmed Sedik; Ali I. Siam; Zainab H. Ali;

An efficient edge/cloud medical system for rapid detection of level of consciousness in emergency medicine based on explainable machine learning models

Abstract

AbstractEmergency medicine (EM) is one of the attractive research fields in which researchers investigate their efforts to diagnose and treat unforeseen illnesses or injuries. There are many tests and observations are involved in EM. Detection of the level of consciousness is one of these observations, which can be detected using several methods. Among these methods, the automatic estimation of the Glasgow coma scale (GCS) is studied in this paper. The GCS is a medical score used to describe a patient’s level of consciousness. This type of scoring system requires medical examination that may not be available with the shortage of the medical expert. Therefore, the automatic medical calculation for a patient’s level of consciousness is highly needed. Artificial intelligence has been deployed in several applications and appears to have a high performance regarding providing automatic solutions. The main objective of this work is to introduce the edge/cloud system to improve the efficiency of the consciousness measurement through efficient local data processing. Moreover, an efficient machine learning (ML) model to predict the level of consciousness of a certain patient based on the patient’s demographic, vital signs, and laboratory tests is proposed, as well as maintaining the explainability issue using Shapley additive explanations (SHAP) that provides natural language explanation in a form that helps the medical expert to understand the final prediction. The developed ML model is validated using vital signs and laboratory tests extracted from the MIMIC III dataset, and it achieves superior performance (mean absolute error (MAE) = 0.269, mean square error (MSE) = 0.625, R2 score = 0.964). The resulting model is accurate, medically intuitive, and trustworthy.

Related Organizations
Keywords

Radiology, Nuclear Medicine and Imaging, Artificial intelligence, Consciousness, Deep Learning Applications in Healthcare, Medical Concept Embedding, Applications of Deep Learning in Medical Imaging, Computer science, Data science, Anomaly Detection in High-Dimensional Data, Enhanced Data Rates for GSM Evolution, FOS: Psychology, Operating system, Computational Science and Engineering, Artificial Intelligence, Computer Science, Physical Sciences, Health Sciences, Machine learning, Medicine, Cloud computing, Psychology, Original Article, Pneumonia Detection, Neuroscience

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities