Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Instrumentation and Measurement
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Learning-Based Automated Extraction of Anthropometric Measurements From a Single 3-D Scan

Authors: Nastaran Nourbakhsh Kaashki; Pengpeng Hu; Adrian Munteanu;

Deep Learning-Based Automated Extraction of Anthropometric Measurements From a Single 3-D Scan

Abstract

The appearance of 3D scanners, generating point clouds, has revolutionized anthropometric data collection systems and its applications. Anthropometric data is of paramount importance in several applications, including fashion design, medical diagnosis and virtual character modelling, all of which require an fully-automatic anthropometric measurement extraction method. 3D-based methods for anthropometric measurement extraction become more and more popular due to their improved accuracy compared to classical image-based approaches. Existing 3D methods can be mainly classified in two categories: landmark and template-based methods. The former is highly dependent on the estimated landmarks which is highly sensitive to noise in the input or missing data. The latter has to iteratively solve an objective function to deform a body template to fit the scan, which is time-consuming while being also sensitive to noise and missing data. In this study, we propose the first approach for automatic contact-less Anthropometric Measurements extraction based on Deep-Learning (AM-DL). A novel module dubbed Multi-scale EdgeConv is proposed to learn local features from point clouds at multiple scales. Multi-scale EdgeConv can be directly integrated with other neural networks for various tasks, e.g., classification of point clouds. We exploit this module to design an encoder-decoder architecture which learns to deform a template model to fit a given scan. The measurement values are then calculated on the deformed template model. To evaluate the proposed method, 27 female and 25 male subjects were scanned using a photogrametry-based scanner and measured by an experienced tailor. Experimental results on the synthetic ModelNet40 dataset and on the real scans demonstrate that the proposed method outperforms state-of-the-art methods, and performs sufficiently close to a professional tailor.

Related Organizations
Keywords

Point cloud, Anthropometric measurement, Deep learning, template fitting, encoder-decoder architectures

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!