Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Peroxynitrite-induced oxidation of plasma lipids is enhanced in stable hemodialysis patients

Authors: Ferraro B.; GALLI, Francesco; Frei B.; Kingdon E.; Canestrari F.; Rice Evans C.; Buoncristiani U.; +2 Authors

Peroxynitrite-induced oxidation of plasma lipids is enhanced in stable hemodialysis patients

Abstract

The relationship between end-stage renal disease (ESRD), hemodialysis, and oxidative stress is controversial. To determine whether ESRD causes oxidative stress, we measured basal levels of plasma F2-isoprostanes as a marker of lipid peroxidation in vivo, and peroxynitrite-stimulated formation of F2-isoprostanes, as a marker of the oxidizibility of plasma lipids in vitro, before and after routine hemodialysis.Total plasma F2-isoprostanes were measured by gas chromatography-mass spectrometry (GC-MS) before and after the oxidation of plasma lipids with the peroxynitrite-generating compound, 3-morpholino-sydnonimine (SIN-1), in 23 patients with ESRD patients undergoing regular hemodialysis, and 14 controls. Plasma vitamin E concentrations were measured by high-performance liquid chromatography (HPLC).There was no difference in basal plasma concentrations of F2-isoprostanes in the ESRD group prior to hemodialysis, 246 +/- 20 pg/mL, compared to controls, 252 +/- 28 pg/mL, or immediately on completion of hemodialysis, 236 +/- 14 pg/mL. Incubation of control plasma with SIN-1 caused the formation of F2-isoprostanes with plasma concentrations increasing to 987 +/- 54 pg/mL at 6 hours. The formation of F2-isoprostanes stimulated by SIN-1 was markedly enhanced in the plasma obtained from patients undergoing hemodialysis at 1861 +/- 174 pg/mL, P < 0.001, and SIN-1-induced formation of F2-isoprostanes was further increased in plasma obtained immediately after hemodialysis at 2437 +/- 168 pg/mL, P < 0.001. Incubation of plasma with SIN-1 resulted in the net consumption of vitamin E.Although basal plasma F2-isoprostanes were similar in patients with ESRD compared with controls, the presence of oxidative stress in patients with ESRD was unmasked when the plasma was stressed by peroxynitrite generated from SIN-1, and this was enhanced further by hemodialysis.

Keywords

Adult, Male, 610, Tocopherols, F2-isoprostanes, SIN-1, chronic renal failure, Renal Dialysis, Peroxynitrous Acid, Humans, Nitric Oxide Donors, Aged, Aged, 80 and over, F2-Isoprostanes, lipid peroxidation, Membranes, Artificial, Middle Aged, 540, Lipids, Uric Acid, Nephrology, Molsidomine, dialysis, Kidney Failure, Chronic, Female, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
hybrid