
pmid: 37506016
In this article, a novel multi-strategy adaptive selection-based dynamic multiobjective optimization algorithm (MSAS-DMOA) is proposed, which adopts the non-inductive transfer learning (TL) paradigm to solve dynamic multiobjective optimization problems (DMOPs). In particular, based on a scoring system that evaluates environmental changes, the source domain is adaptively constructed with several optional groups to enrich the knowledge. Along with a group of guide solutions, the importance of historical experiences is estimated via the kernel mean matching (KMM) method, which avoids designing strategies to label individuals. The proposed MSAS-DMOA is comprehensively evaluated on 14 DMOPs, and the results show an overwhelming performance improvement in terms of both convergence and diversity as compared with other four popular DMOAs. In addition, ablation studies are also conducted to validate the superiority of the applied strategies in MSAS-DMOA, which can effectively alleviate the negative transfer phenomenon. Without the conventional labeling procedure, the proposed method also yields satisfactory results, which can provide valuable reference for designing other evolutionary transfer optimization (ETO) algorithms.
330, kernel mean matching (KMM), transfer learning (TL), evolutionary transfer optimization (ETO), dynamic multiobjective optimization algorithm (DMOA)
330, kernel mean matching (KMM), transfer learning (TL), evolutionary transfer optimization (ETO), dynamic multiobjective optimization algorithm (DMOA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
