Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parameterized Approximation Algorithms for K-center Clustering and Variants

Authors: Sayan Bandyapadhyay; Zachary Friggstad; Ramin Mousavi;

Parameterized Approximation Algorithms for K-center Clustering and Variants

Abstract

k-center is one of the most popular clustering models. While it admits a simple 2-approximation in polynomial time in general metrics, the Euclidean version is NP-hard to approximate within a factor of 1.93, even in the plane, if one insists the dependence on k in the running time be polynomial. Without this restriction, a classic algorithm yields a 2^{O((klog k)/{epsilon})}dn-time (1+epsilon)-approximation for Euclidean k-center, where d is the dimension. In this work, we give a faster algorithm for small dimensions: roughly speaking an O^*(2^{O((1/epsilon)^{O(d)} k^{1-1/d} log k)})-time (1+epsilon)-approximation. In particular, the running time is roughly O^*(2^{O((1/epsilon)^{O(1)}sqrt{k}log k)}) in the plane. We complement our algorithmic result with a matching hardness lower bound. We also consider a well-studied generalization of k-center, called Non-uniform k-center (NUkC), where we allow different radii clusters. NUkC is NP-hard to approximate within any factor, even in the Euclidean case. We design a 2^{O(klog k)}n^2 time 3-approximation for NUkC, and a 2^{O((klog k)/epsilon)}dn time (1+\epsilon)-approximation for Euclidean NUkC. The latter time bound matches the bound for k-center.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green