
AbstractIf V is a system of weights on a completely regular Hausdorff space X and E is alocally convex space, then CV0(X, E) and CVb (X, E) are locally convex spaces of vector-valued continuous functions with topologies generated by seminorms which are weighted analogues of the supremum norm. In this paper we characterise multiplication operators on these spaces induced by scalar-valued and vector-valued mappings. Many examples are presented to illustrate the theory.
completely regular Hausdorff space, Spaces of vector- and operator-valued functions, multiplication operator, Linear operators on function spaces (general), Topological linear spaces of continuous, differentiable or analytic functions, system of weights
completely regular Hausdorff space, Spaces of vector- and operator-valued functions, multiplication operator, Linear operators on function spaces (general), Topological linear spaces of continuous, differentiable or analytic functions, system of weights
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
