
Introduction. Detection, isolation, selection and localization of variously shaped objects in images are essential in a variety of applications. Computer vision systems utilizing television and infrared cameras, synthetic aperture surveillance radars as well as laser and acoustic remote sensing systems are prominent examples. Such problems as object identification, tracking and matching as well as combining information from images available from different sources are essential. Objective. Design of image segmentation and object selection methods based on multi-threshold processing. Materials and methods. The segmentation methods are classified according to the objects they deal with, including (i) pixel-level threshold estimation and clustering methods, (ii) boundary detection methods, (iii) regional level, and (iv) other classifiers, including many non-parametric methods, such as machine learning, neural networks, fuzzy sets, etc. The keynote feature of the proposed approach is that the choice of the optimal threshold for the image segmentation among a variety of test methods is carried out using a posteriori information about the selection results. Results. The results of the proposed approach is compared against the results obtained using the well-known binary integration method. The comparison is carried out both using simulated objects with known shapes with additive synthesized noise as well as using observational remote sensing imagery. Conclusion. The article discusses the advantages and disadvantages of the proposed approach for the selection of objects in images, and provides recommendations for their use.
multi-threshold processing, object selection, binary integration method, TK7800-8360, statistical modelling, Electronics, image segmentation
multi-threshold processing, object selection, binary integration method, TK7800-8360, statistical modelling, Electronics, image segmentation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
