Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ARUdAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Alzheimer s Disease
Article . 2018
Data sources: mEDRA
Journal of Alzheimer s Disease
Article . 2018 . Peer-reviewed
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Abnormalities of Resting State Cortical EEG Rhythms in Subjects with Mild Cognitive Impairment Due to Alzheimer’s and Lewy Body Diseases

Authors: Babiloni, Claudio; Del Percio, Claudio; Lizio, Roberta; Noce, Giuseppe; Lopez, Susanna; Soricelli, Andrea; Ferri, Raffaele; +32 Authors

Abnormalities of Resting State Cortical EEG Rhythms in Subjects with Mild Cognitive Impairment Due to Alzheimer’s and Lewy Body Diseases

Abstract

The present study tested the hypothesis that cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms reveal different abnormalities in cortical neural synchronization in groups of patients with mild cognitive impairment due to Alzheimer’s disease (ADMCI) and dementia with Lewy bodies (DLBMCI) as compared to cognitively normal elderly (Nold) subjects. Clinical and rsEEG data in 30 ADMCI, 23 DLBMCI, and 30 Nold subjects were available in an international archive. Age, gender, and education were carefully matched in the three groups. The Mini-Mental State Evaluation (MMSE) score was matched between the ADMCI and DLBMCI groups. Individual alpha frequency peak (IAF) was used to determine the delta, theta, alpha1, alpha2, and alpha3 frequency band ranges. Fixed beta1, beta2, and gamma bands were also considered. eLORETA estimated the rsEEG cortical sources. Receiver operating characteristic curve (ROCC) classified these sources across individuals. Compared to Nold, IAF showed marked slowing in DLBMCI and moderate in ADMCI. Furthermore, the posterior alpha 2 and alpha 3 source activities were more abnormal in the ADMCI than the DLBMCI group, while widespread delta source activities were more abnormal in the DLBMCI than the ADMCI group. The posterior delta and alpha sources correlated with the MMSE score and correctly classified the Nold and MCI individuals (area under the ROCC >0.85). In conclusion, the ADMCI and DLBMCI patients showed different features of cortical neural synchronization at delta and alpha frequencies underpinning brain arousal and vigilance in the quiet wakefulness. Future prospective cross-validation studies will have to test the clinical validity of these rsEEG markers.

Countries
Switzerland, Turkey, Turkey, Italy, United Kingdom, Italy, Italy, Italy
Keywords

Lewy Body Disease, Male, Mild Cognitive Impairment Due to Dementia With Lewy Bodies, Rest, Exact low resolution brain electromagnetic source tomography (eLORETA); mild cognitive impairment due to Alzheimer's disease; mild cognitive impairment due to dementia with Lewy bodies; receiver operating characteristic curve; resting state electroencephalographic rhythms; Aged; Alzheimer Disease; Brain; Cognitive Dysfunction; Educational Status; Female; Humans; Lewy Body Disease; Male; Psychotropic Drugs; Rest; Retrospective Studies; Signal Processing, Computer-Assisted; Electroencephalography, mild cognitive impairment due to Alzheimer's disease, Receiver Operating Characteristic Curve, Exact Low Resolution Brain Electromagnetic Source Tomography (Eloreta), 618, 618.97, mild cognitive impairment due to dementia with Lewy bodies, exact low resolution brain electromagnetic source tomography (eLORETA); mild cognitive impairment due to Alzheimer’s disease; mild cognitive impairment due to dementia with Lewy bodies; receiver operating characteristic curve; resting state electroencephalographic rhythms, Exact low resolution brain electromagnetic source tomography (eLORETA), mild cognitive impairment due to Alzheimer's disease, mild cognitive impairment due to dementia with Lewy bodies, receiver operating characteristic curve, resting state electroencephalographic rhythms, Alzheimer Disease, Humans, Cognitive Dysfunction, receiver operating characteristic curve, resting state electroencephalographic rhythms, Aged, Retrospective Studies, Resting State Electroencephalographic Rhythms, Psychotropic Drugs, Exact low resolution brain electromagnetic source tomography (eLORETA), Brain, Electroencephalography, Signal Processing, Computer-Assisted, Mild Cognitive Impairment Due to Alzheimer's Disease, Exact low resolution brain electromagnetic source tomography (eLORETA); mild cognitive impairment due to Alzheimer’s disease; mild cognitive impairment due to dementia with Lewy bodies; receiver operating characteristic curve; resting state electroencephalographic rhythms, Educational Status, Female, ddc: ddc:618.97

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
Green