Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ East European Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
East European Journal of Physics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
East European Journal of Physics
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancement of Molecular Structural and Linear/Nonlinear Optical Features of Chitosan/Titanium Dioxide Nanocomposite Films for Food Packaging and Optoelectronic Applications

Authors: Osiris Guirguis; Najlaa D. Alharbi;

Enhancement of Molecular Structural and Linear/Nonlinear Optical Features of Chitosan/Titanium Dioxide Nanocomposite Films for Food Packaging and Optoelectronic Applications

Abstract

The current study aims to synthesize and characterize nanocomposite films of chitosan and titanium dioxide in terms of molecular structure, thermal and optical properties for use in food packaging and optoelectronic applications. The Fourier-transform infrared (FTIR) spectroscopy was used to study the interaction between the TiO2-NPs and chitosan and the analysis confirmed that TiO2-NPs interacted with chitosan and demonstrated good compatibility. Differential scanning calorimetry and thermogravimetric analysis revealed that increasing the concentration of TiO2-NPs improved the thermal stability of the nanocomposites. The linear optical properties in the UV-Vis range (200–800 nm) were measured spectrophotometrically. Below 400 nm, the transmittance spectra of the nanocomposites show decreased degrees of transparency, indicating their capacity to entirely block UV-light transmission. Tauc's model was used to identify the types of electronic transitions in the samples. The single-oscillator model was utilized to investigate the dispersion energy and parameters. Nonlinear optical properties were also investigated. UV-Vis in the region (360-410 nm), the analysis revealed that increasing the concentration of TiO2-NPs from 0 to 12 wt% reduced the absorption edge from 2.716 to 2.043 eV, decreased the direct (3.282 to 2.798 eV) and indirect (2.417 to 1.581 eV) energy band gaps, increased the Urbach energy from 0.692 to 1.295 eV, decreased the dispersion energy from 11.324 to 5.621 eV, decreased the single oscillator energy from 6.308 to 5.393 eV, and improved the other linear and nonlinear parameters. The findings support the usage of CS/TiO2 nanocomposite films in the packaging industry and a variety of optical applications.

Related Organizations
Keywords

chitosan/tio2 nanocomposites, linear/nonlinear optical properties, tio2 nanoparticles, Physics, QC1-999, chitosan, ftir analysis, thermal stability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold