Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1137/1.9781...
Part of book or chapter of book . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

Fine-Grained Optimality of Partially Dynamic Shortest Paths and More

Authors: Barna Saha; Virginia Vassilevska Williams; Yinzhan Xu; Christopher Ye 0001;

Fine-Grained Optimality of Partially Dynamic Shortest Paths and More

Abstract

Single Source Shortest Paths ($\textrm{SSSP}$) is among the most well-studied problems in computer science. In the incremental (resp. decremental) setting, the goal is to maintain distances from a fixed source in a graph undergoing edge insertions (resp. deletions). A long line of research culminated in a near-optimal deterministic $(1 + \varepsilon)$-approximate data structure with $m^{1 + o(1)}$ total update time over all $m$ updates by Bernstein, Probst Gutenberg and Saranurak [FOCS 2021]. However, there has been remarkably little progress on the exact $\textrm{SSSP}$ problem beyond Even and Shiloach's algorithm [J. ACM 1981] for unweighted graphs. For weighted graphs, there are no exact algorithms beyond recomputing $\textrm{SSSP}$ from scratch in $\widetilde{O}(m^2)$ total update time, even for the simpler Single-Source Single-Target Shortest Path problem ($\textrm{stSP}$). Despite this lack of progress, known (conditional) lower bounds only rule out algorithms with amortized update time better than $m^{1/2 - o(1)}$ in dense graphs. In this paper, we give a tight (conditional) lower bound: any partially dynamic exact $\textrm{stSP}$ algorithm requires $m^{2 - o(1)}$ total update time for any sparsity $m$. We thus resolve the complexity of partially dynamic shortest paths, and separate the hardness of exact and approximate shortest paths, giving evidence as to why no non-trivial exact algorithms have been obtained while fast approximation algorithms are known. Moreover, we give tight bounds on the complexity of combinatorial algorithms for several path problems that have been studied in the static setting since early sixties: Node-weighted shortest paths (studied alongside edge-weighted shortest paths), bottleneck paths (early work dates back to 1960), and earliest arrivals (early work dates back to 1958).

54 pages, 4 figures, abstract shortened to meet arXiv requirements

Keywords

FOS: Computer and information sciences, Computer Science - Computational Complexity, F.2.2; F.1.3, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), F.2.2, F.1.3, Computational Complexity (cs.CC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green