Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ICTACT Journal on So...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ICTACT Journal on Soft Computing
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ICTACT Journal on Soft Computing
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MRI-BRAIN TUMOR CLASSIFICATION USING K-MEANS CLUSTERING AND ENHANCED HARMONY FEATURE SELECTION

Authors: B. Sathees Kumar;

MRI-BRAIN TUMOR CLASSIFICATION USING K-MEANS CLUSTERING AND ENHANCED HARMONY FEATURE SELECTION

Abstract

This study introduces an enhanced feature selection method that is efficient in differentiating the malignant tumor patients from the benign patients by using K-Means clustering method combined with enhanced harmony search algorithm. The start of malignant tumor is caused by gene mutation process, it is very vital to identify and classify the presence or absence of the malignant tumor through analyzing the gene information. The planned methodology composed of four steps. The first step is to preprocess the original data by using min-max normalization. In the next step, generalized fisher score is used to find and eliminate the redundant data to confine the significant candidate genes. Selection of representative gene from each cluster is done by the K-Means clustering technique in the next phase. In the final phase the vital features for classification are selected by enhanced harmony search algorithm. The selected gene combination through this method for feature selection is then applied to the classification model and verified by means of 5-fold cross validation method. The projected model obtained a classification accuracy of up to 96.67%. Additionally, on comparing the projected method with other methods, the projected method performs well in classifying malignant tumor. This new method performs well in classification of brain tumors to malignant or benign. The projected model cannot be restricted only with the classification of brain tumors, but can also be used for other gene-related diseases effectively.

Keywords

TK7885-7895, Computer engineering. Computer hardware, feature selection, gene expression, min-max normalization, enhanced harmony search, k-means clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold