
How to choose a proper number of the neighbors is an important issue of the locally linear embedding algorithm. To investigate this issue, we propose an optimized locally linear embedding algorithm with adaptive neighbors (ANLLE). The ANLLE selects the neighbors with a locally adaptive criterion. In addition, a new data point mapping method that computes the low-dimensional description of the correspondents is introduced in the ANLLE. The experiment results of the manifold expansion and the face recognition showed that the optimized algorithm is more effective than the original algorithm. The result of the present work implied that the ANLLE could improve the linear correlation of the neighbors and the data points. Moreover, it maintains the distance between the data points and reduces the application difficulty of the locally linear embedding algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
