
The integration of artificial intelligence (AI) in aquaculture has been identified as a transformative force, enhancing various operational aspects from water quality management to genetic optimization. This review provides a comprehensive synthesis of recent advancements in AI applications within the aquaculture sector, underscoring the significant enhancements in production efficiency and environmental sustainability. Key AI-driven improvements, such as predictive analytics for disease management and optimized feeding protocols, are highlighted, demonstrating their contributions to reducing waste and improving biomass outputs. However, challenges remain in terms of data quality, system integration, and the socio-economic impacts of technological adoption across diverse aquacultural environments. This review also addresses the gaps in current research, particularly the lack of robust, scalable AI models and frameworks that can be universally applied. Future directions are discussed, emphasizing the need for interdisciplinary research and development to fully leverage AI potential in aquaculture. This study not only maps the current landscape of AI applications but also serves as a call for continued innovation and strategic collaborations to overcome existing barriers and realize the full benefits of AI in aquaculture.
AI disease management, Sustainable aquaculture, Aquaculture AI integration, AI feeding optimization, S, Agriculture, Predictive analytics
AI disease management, Sustainable aquaculture, Aquaculture AI integration, AI feeding optimization, S, Agriculture, Predictive analytics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
