Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Artificial Intelligence in Medicine
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic classification of epilepsy types using ontology-based and genetics-based machine learning

Authors: Yohannes Kassahun; Roberta Perrone; Elena De Momi; Elmar Berghöfer; Laura Tassi; Maria Paola Canevini; Roberto Spreafico; +2 Authors

Automatic classification of epilepsy types using ontology-based and genetics-based machine learning

Abstract

In the presurgical analysis for drug-resistant focal epilepsies, the definition of the epileptogenic zone, which is the cortical area where ictal discharges originate, is usually carried out by using clinical, electrophysiological and neuroimaging data analysis. Clinical evaluation is based on the visual detection of symptoms during epileptic seizures. This work aims at developing a fully automatic classifier of epileptic types and their localization using ictal symptoms and machine learning methods.We present the results achieved by using two machine learning methods. The first is an ontology-based classification that can directly incorporate human knowledge, while the second is a genetics-based data mining algorithm that learns or extracts the domain knowledge from medical data in implicit form.The developed methods are tested on a clinical dataset of 129 patients. The performance of the methods is measured against the performance of seven clinicians, whose level of expertise is high/very high, in classifying two epilepsy types: temporal lobe epilepsy and extra-temporal lobe epilepsy. When comparing the performance of the algorithms with that of a single clinician, who is one of the seven clinicians, the algorithms show a slightly better performance than the clinician on three test sets generated randomly from 99 patients out of the 129 patients. The accuracy obtained for the two methods and the clinician is as follows: first test set 65.6% and 75% for the methods and 56.3% for the clinician, second test set 66.7% and 76.2% for the methods and 61.9% for the clinician, and third test set 77.8% for the methods and the clinician. When compared with the performance of the whole population of clinicians on the rest 30 patients out of the 129 patients, where the patients were selected by the clinicians themselves, the mean accuracy of the methods (60%) is slightly worse than the mean accuracy of the clinicians (61.6%). Results show that the methods perform at the level of experienced clinicians, when both the methods and the clinicians use the same information.Our results demonstrate that the developed methods form important ingredients for realizing a fully automatic classification of epilepsy types and can contribute to the definition of signs that are most important for the classification.

Country
Italy
Keywords

Electroencephalography, Data mining (knowledge discovery) from medical data; Epileptogenic zone identification; Genetics-based classification; Ontology-based classification, Diagnosis, Differential, Epilepsy, Temporal Lobe, Artificial Intelligence, Data Mining, Humans, Diagnosis, Computer-Assisted, Epilepsies, Partial, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Green