
arXiv: 2402.09492
It is desirable in many multi-objective machine learning applications, such as multi-task learning with conflicting objectives and multi-objective reinforcement learning, to find a Pareto solution that can match a given preference of a decision maker. These problems are often large-scale with available gradient information but cannot be handled very well by the existing algorithms. To tackle this critical issue, this paper proposes a novel predict-and-correct framework for locating a Pareto solution that fits the preference of a decision maker. In the proposed framework, a constraint function is introduced in the search progress to align the solution with a user-specific preference, which can be optimized simultaneously with multiple objective functions. Experimental results show that our proposed method can efficiently find a particular Pareto solution under the demand of a decision maker for standard multiobjective benchmark, multi-task learning, and multi-objective reinforcement learning problems with more than thousands of decision variables. Code is available at: https://github.com/xzhang2523/pmgda. Our code is current provided in the pgmda.rar attached file and will be open-sourced after publication.}
Computer Science - Machine Learning
Computer Science - Machine Learning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
