
High-dimensional and sparse (HiDS) matrices from recommender systems contain various useful patterns. A latent factor (LF) analysis is highly efficient in grasping these patterns. Stochastic gradient descent (SGD) is a widely adopted algorithm to train an LF model. Can its extensions be capable of further improving an LF models’ convergence rate and prediction accuracy for missing data? To answer this question, this work selects two of representative extended SGD algorithms to propose two novel LF models. Experimental results from two HiDS matrices generated by real recommender systems show that compared standard SGD, extended SGD algorithms enable an LF model to achieve a higher prediction accuracy for missing data of an HiDS matrix, a faster convergence rate, and a larger model diversity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
