Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kinematics of a spherical parallel mechanism with identical limb structures using the linear implicitization algorithm and Euclidean Geometry

Authors: S. Chaeibakhsh; Mohammad Hadi Farzaneh Kaloorazi; Mehdi Tale Masouleh;

Kinematics of a spherical parallel mechanism with identical limb structures using the linear implicitization algorithm and Euclidean Geometry

Abstract

This paper investigates the inverse and forward kinematic expressions of a three degrees-of-freedom parallel mechanism with identical limb structures, performing three independent rotations. The forward kinematic and constraint expressions are explored in two different spaces, namely, seven-dimensional kinematic space and Euclidean space. The algorithm applied to obtain the forward kinematic and constraint equations in seven-dimensional space, by the means of Study parameters, is a novel approach which is the so-called linear implicitization algorithm. Moreover, the working and assembly modes are computed upon writing the kinematic expression in Euclidean space.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!