Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Technology Audit and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Technology Audit and Production Reserves
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Technology Audit and Production Reserves
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Software implementation of the technogenic risk assessment method of an industrial object using the monte-carlo method

Authors: Bojko, Tetyana; Abramova, Alla; Skladannyy, Denys; Vavulin, Petro;

Software implementation of the technogenic risk assessment method of an industrial object using the monte-carlo method

Abstract

The object of research is the industrial risk of an industrial facility. One of the most problematic places is the uncertainty of the initial information regarding the object of study and the lack of a universal methodology that would allow an assessment of technological risks at all stages of the operation of an industrial object. A particularly acute problem concerns potentially hazardous industries. The analysis of existing methods and approaches to assessing the technological risks of industrial facilities at different stages of their functioning is carried out. It is established that one of the best methods is the Monte Carlo method, which allows to quantify the uncertainty of decisions. The use of the Monte Carlo method for quantitative hazard analysis in order to determine the probability of accidents and accidents, the magnitude of the risk, the magnitude of the possible consequences is justified. The elements of the theory of reliability for the quantitative assessment of risks are used. A quantitative hazard analysis in accordance with the theory of reliability makes it possible to determine the probability of accidents and accidents, the magnitude of the risk, the magnitude of the possible consequences. Probability methods and statistical analysis are integral parts of the quantitative analysis of hazards and technological risk. An algorithm is developed to determine the industrial risk of an industrial facility using the theory of reliability. A software package is developed based on the theory of reliability with a combination of Monte Carlo simulation of the system. The developed software package allows to analyze the level of technogenic risk when using various methods of connecting elements of the system, as well as evaluate changes in the reliability of the system when using other components. The program is presented on the example of a system, the components of which are the heaters PVT1-7 (Ukraine) in the technological system of a thermal power plant. The system under study is at the border of an unacceptable and conditionally acceptable level of danger, which gives grounds for the need to take measures to increase the reliability of the system by increasing the number of backup system elements, or improving their quality.

Keywords

техногенний ризик; метод Монте-Карло; теорія надійності; програмний комплекс; надійність системи., technological risk; Monte Carlo method; reliability theory; software package; system reliability., УДК 519.85, техногенный риск; метод Монте-Карло; теория надежности; программный комплекс; надежность системы.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 4
  • 2
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
2
4
gold