
Striking a balance between objective optimization and constraint satisfaction is essential for solving constrained multi-objective optimization problems (CMOPs). Nevertheless, most existing evolutionary algorithms face significant challenges on CMOPs with intricate infeasible regions. To tackle these challenges, this paper proposes an adaptive two-population evolutionary algorithm, named ATEA, which dynamically exploits promising information under infeasible solutions to facilitate objective optimization and constraint satisfaction. Specifically, a two-population collaboration mechanism is designed to balance the unconstrained Pareto front search and constrained Pareto front search. Moreover, an adaptive constraint handling strategy is presented to reasonably deploy search resources. Furthermore, a promising infeasibility-based environmental selection and an elitist feasibility-based environmental selection are developed for the two populations to break through complex infeasible barriers and enhance selection pressure, respectively. Comparison experimental results of ATEA with five state-of-the-art algorithms on 33 benchmark test problems and 4 real-word CMOPs demonstrate that ATEA performs competitively with the chosen designs.
evolutionary algorithm, objective optimization, multi-state, constraint satisfaction, Electrical engineering. Electronics. Nuclear engineering, Constrained multi-objective optimization, two-population collaboration mechanism, TK1-9971
evolutionary algorithm, objective optimization, multi-state, constraint satisfaction, Electrical engineering. Electronics. Nuclear engineering, Constrained multi-objective optimization, two-population collaboration mechanism, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
