Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Computer Visionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Computer Vision
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Computer Vision
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Computer Vision
Article . 2022
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi‐stream adaptive spatial‐temporal attention graph convolutional network for skeleton‐based action recognition

Authors: Yu Lubin; Lianfang Tian; Qiliang Du; Jameel Ahmed Bhutto;

Multi‐stream adaptive spatial‐temporal attention graph convolutional network for skeleton‐based action recognition

Abstract

Abstract Skeleton‐based action recognition algorithms have been widely applied to human action recognition. Graph convolutional networks (GCNs) generalize convolutional neural networks (CNNs) to non‐Euclidean graphs and achieve significant performance in skeleton‐based action recognition. However, existing GCN‐based models have several issues, such as the topology of the graph is defined based on the natural skeleton of the human body, which is fixed during training, and it may not be applied to different layers of the GCN model and diverse datasets. Besides, the higher‐order information of the joint data, for example, skeleton and dynamic information is not fully utilised. This work proposes a novel multi‐stream adaptive spatial‐temporal attention GCN model that overcomes the aforementioned issues. The method designs a learnable topology graph to adaptively adjust the connection relationship and strength, which is updated with training along with other network parameters. Simultaneously, the adaptive connection parameters are utilised to optimise the connection of the natural skeleton graph and the adaptive topology graph. The spatial‐temporal attention module is embedded in each graph convolution layer to ensure that the network focuses on the more critical joints and frames. A multi‐stream framework is built to integrate multiple inputs, which further improves the performance of the network. The final network achieves state‐of‐the‐art performance on both the NTU‐RGBD and Kinetics‐Skeleton action recognition datasets. The simulation results prove that the proposed method reveals better results than existing methods in all perspectives and that shows the superiority of the proposed method.

Keywords

QA76.75-76.765, topology, image colour analysis, graph theory, image thinning, Computer applications to medicine. Medical informatics, R858-859.7, learning (artificial intelligence), Computer software, image motion analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold