Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engineering Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Engineering Reports
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Engineering Reports
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gypsum Binder With Increased Water Resistance Derived From Membrane Water Desalination Waste

Authors: Valentin Romanovski; Dmitry Moskovskikh; Hongbin Tan; Kirill Kuskov; Sergey Volodko; Abayomi Adewale Akinwande; Rajiv Periakaruppan; +4 Authors

Gypsum Binder With Increased Water Resistance Derived From Membrane Water Desalination Waste

Abstract

ABSTRACTA method has been developed for separating a mixture of calcium, magnesium and sodium sulfates obtained through the interaction of sulfuric acid and waste from the water purification process generated by using membrane filters. The primary goal of this method is to extract gypsum and produce gypsum‐based binders. Patterns were identified regarding how various types, ratio and quantities of additives: blast furnace slag, granite screenings, portland cement, electric steel smelting slag affect the water‐gypsum ratio, strength properties, and water resistance of high‐strength gypsum binders. It was found that adding a single‐component additive specifically to enhance water resistance does not significantly impact these properties. Complex additives have been developed based on Portland cement, granulated blast furnace slag, electric furnace slag, expanded clay dust, and granite screenings of various fractions. These additives are designed to maximize the water resistance of high‐strength gypsum binder based on synthetic calcium sulfate dihydrate. As a result, the water resistance coefficient increased from 0.45 to 0.52. Additionally, a technological block diagram of the process has been proposed.

Keywords

гипсовое связующее, синтетический гипс, additive, добавки, коэффициент водостойкости, production waste, synthetic gypsum, water resistance, QA75.5-76.95, Engineering (General). Civil engineering (General), отходы производства, водостойкость, waste recycling, Electronic computers. Computer science, plaster binder, TA1-2040, переработка отходов, strength, water resistance coefficient

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold