
Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence�s orientation (e.g. positive or negative) is one of their key challenges. Recently, deep learning has emerged as an effective means for solving sentiment classification problems. Deep learning is a class of machine learning algorithms that learn in supervised and unsupervised manners. A neural network intrinsically learns a useful representation automatically without human efforts. However, the success of deep learning highly relies on the large-scale training data. We propose a novel deep learning framework for product review sentiment classification which employs prevalently available ratings supervision signals. The framework consists of two steps: (1) learning a high-level representation (an embedding space) which captures the general sentiment distribution of sentences through rating information; (2) adding a category layer on top of the embedding layer and use labelled sentences for supervised fine-tuning. We explore two kinds of low-level network structure for modelling review sentences, namely, convolutional function extractors and long temporary memory. Convolutional layer is the core building block of a CNN and it consists of kernels. Applications are image and video recognition, natural language processing, image classification
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
