Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kr-POK (ZBTB7c) regulates cancer cell proliferation through glutamine metabolism

Authors: Man-Wook, Hur; Jae-Hyeon, Yoon; Min-Young, Kim; Hyeonseok, Ko; Bu-Nam, Jeon;

Kr-POK (ZBTB7c) regulates cancer cell proliferation through glutamine metabolism

Abstract

Kr-POK (ZBTB7c) is a kidney cancer-related POK transcription factor that not only represses transcription of CDKN1A but also increases expression of FASN. However, precisely how Kr-POK affects cell metabolism by controlling gene expression in response to an energy source in rapidly proliferating cells remains unknown. In this study, we characterized the molecular and functional features of Kr-POK in the context of tumor growth and glutamine metabolism. We found that cells expressing Kr-POK shRNA exhibited more severe cell death than control cells in glucose-deprived medium, and that knockdown of Kr-POK decreased glutamine uptake. Glutamine is critical for tumor cell proliferation. Glutaminase (GLS1), which is activated by p-STAT1, catalyzes the initial reaction in the pathway of glutaminolysis. Kr-POK interacts with PIAS1 to disrupt the interaction between PIAS1 and p-STAT1, and free p-STAT1 can activate GLS1 transcription through an interaction with p300. Kr-POK can be also sumoylated by PIAS1, facilitating Kr-POK degradation by the ubiquitin-mediated proteasomal pathway. Finally, we showed that repression of Kr-POK inhibited tumor growth in vivo in a xenograft model by repressing GLS1 expression. Taken together, our data reveal that Kr-POK activates GLS1 transcription and increases glutamine uptake to support rapid cancer cell proliferation.

Keywords

Male, 570, Transcription, Genetic, Glutamine, Nude, Kr-POK (Zbtb7c), 610, Mice, Nude, PIAS1, Cell Death/genetics, Cell Line, Mice, Glutaminase, Neoplasms, Animals, Humans, Transcription Factors/metabolism, p-STAT1, RNA, Small Interfering, Inbred BALB C, Genetic/genetics, GLS1, Cell Proliferation, Mice, Inbred BALB C, Glutaminase/metabolism, Cell Death, Intracellular Signaling Peptides and Proteins, Proteins, Neoplastic/genetics, Neoplasms/genetics, Gene Expression Regulation, Neoplastic, HEK293 Cells, STAT1 Transcription Factor, Gene Expression Regulation, Small Interfering/genetics, RNA, Glutamine metabolism, STAT1 Transcription Factor/metabolism, Cell Proliferation/genetics*, Glutamine/metabolism*, Proteins/metabolism*, Transcription, Neoplasms/metabolism, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average
Green