Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Nuclear Safet...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Nuclear Safety
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Approaches to the Calculation of Round and Annular Plate Bending, as Well as Estimation of Their Lowest Natural Frequencies

Authors: A. S. Kravchuk; S. A. Tomilin; A. I. Kravchuk; S. F. Godunov; A. F. Smaliuk;

New Approaches to the Calculation of Round and Annular Plate Bending, as Well as Estimation of Their Lowest Natural Frequencies

Abstract

The transverse movements of the plates of constant thickness are assumed to be small. In this case the plates are bent by moments applied at the edge with constant intensity. For the first time, a theory of the pure bending of round and annular plates by moments of constant intensity applied to their circular boundaries. Pure bending is understood as a stress-strain state in which shears in the plates are completely absent. Within the framework of the accepted hypotheses, the normal radial deformations of the plates are determined. Based on the continuity equation in the axisymmetric case, it was established that the normal radial and circumferential strains coincide. Using Hooke's law, the normal stresses acting in the plates are determined. Based on the equilibrium equations, the moments necessary for bending the plates to a given curvature are calculated. A differential equation is obtained for determining small lateral displacements of plates under the action of moments of constant intensity applied to the edge of the plate. The solution of this equation is obtained in elementary form for the case of articulating plates around the perimeter. To proceed for solving the problems of plate bending by a transverse normal load, a method for determining equivalent moments from the acting axisymmetric load, both for round and ring plates is proposed. To satisfy the equilibrium conditions for the plates under consideration of the action of a transverse load, it is assumed that the magnitude of the vertical reaction on the supports along the perimeter is uniformly distributed and equal to the integral value of the normal load divided by the length of the perimeter. As an example, the problems of bending plates under their own weight with articulated support are solved. Within the framework of the proposed theory, solutions to the problems of bending round and annular plates located on the Winkler base are demonstrated. For the first time, a technique has been proposed for determining the lowest natural frequency of both round and annular plates in the framework of the proposed theory of pure bending. A technique is also proposed for taking into account the influence of the Winkler base under the plates on the lower natural frequency.

Keywords

круглая пластина, кольцеобразная пластина, основание винклера, TK9001-9401, низшая собственная частота, чистый изгиб, Nuclear engineering. Atomic power, вычисление эквивалентного момента

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold