Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Image Processingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Image Processing
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SDCA: a novel stack deep convolutional autoencoder – an application on retinal image denoising

Authors: Swarup Kr Ghosh; Biswajit Biswas; Anupam Ghosh;

SDCA: a novel stack deep convolutional autoencoder – an application on retinal image denoising

Abstract

Retinal fundus images are used for the diagnosis and treatment of various eye diseases such as diabetic retinopathy, glaucoma, exudates and so on. The retinal vasculature is difficult to investigate retinal conditions due to the presence of various noises in the retinal image during the capture of the image. Removal of noise is an important aspect for better visibility and diagnosis of the noisy fundus in ophthalmology. This study represents a deep learning based approach to denoising images and restoring features using stack denoising convolutional autoencoder. The proposed scheme is implemented to restore the structural details of fundus as well as to decrease the noise level. Furthermore, the proposed model utilises shared layers with the optimal manner to reduce the noise level of the target image with minimal computational cost. To restore an image, the proposed model brings a patched base training on samples to suppress with one to one manner without any loss of information. To access the denoising effect of the proposed scheme, several standard fundus databases such as DRIVE, STARE and DIARETDB1 have been tested in this study. Comparing the efficiency of the suggested model with state‐of‐art methods, the proposed scheme gives better result in terms of qualitative and quantitative analysis.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
gold