Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Pharmaceutica S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Pharmaceutica Sinica B
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Pharmaceutica Sinica B
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GSFM: A genome-scale functional module transformation to represent drug efficacy for in silico drug discovery

Authors: Saisai Tian; Xuyang Liao; Wen Cao; Xinyi Wu; Zexi Chen; Jinyuan Lu; Qun Wang; +3 Authors

GSFM: A genome-scale functional module transformation to represent drug efficacy for in silico drug discovery

Abstract

Pharmacotranscriptomic profiles, which capture drug-induced changes in gene expression, offer vast potential for computational drug discovery and are widely used in modern medicine. However, current computational approaches neglected the associations within gene‒gene functional networks and unrevealed the systematic relationship between drug efficacy and the reversal effect. Here, we developed a new genome-scale functional module (GSFM) transformation framework to quantitatively evaluate drug efficacy for in silico drug discovery. GSFM employs four biologically interpretable quantifiers: GSFM_Up, GSFM_Down, GSFM_ssGSEA, and GSFM_TF to comprehensively evaluate the multi-dimension activities of each functional module (FM) at gene-level, pathway-level, and transcriptional regulatory network-level. Through a data transformation strategy, GSFM effectively converts noisy and potentially unreliable gene expression data into a more dependable FM active matrix, significantly outperforming other methods in terms of both robustness and accuracy. Besides, we found a positive correlation between RSGSFM and drug efficacy, suggesting that RSGSFM could serve as representative measure of drug efficacy. Furthermore, we identified WYE-354, perhexiline, and NTNCB as candidate therapeutic agents for the treatment of breast-invasive carcinoma, lung adenocarcinoma, and castration-resistant prostate cancer, respectively. The results from in vitro and in vivo experiments have validated that all identified compounds exhibit potent anti-tumor effects, providing proof-of-concept for our computational approach.

Keywords

Drug efficacy, In silico drug discovery, Multi-dimensions activities, Original Article, Data transformation strategy, Therapeutics. Pharmacology, RM1-950, GSFM

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold
Related to Research communities
Cancer Research