
doi: 10.1117/12.2602756
The monocular camera is widely used in robots and unmanned vehicles system because it is low cost and easy to calibrate and identify. However, the depth lack of the monocular camera hinders positioning and determining the real size of obstacles in the unmanned vehicle system. To solve the problem, we propose a collaborative structure to accurately acquire the position of static or dynamic obstacles based on the partially observing information from multiple monocular cameras. After that, a reinforcement learning based obstacle avoidance algorithm is proposed for unmanned vehicles under an unknown environment. Specifically, we discuss the influence of obstacles' moving orientations on the performance of obstacles adaptive avoidance. Simulation results verify the feasibility of the proposed algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
