Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Angewandte Chemiearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie International Edition
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust Proton Conduction against Mechanical Stress in Flexible Free‐Standing Membrane Composed of Two‐Dimensional Coordination Polymer

Authors: Jiangfeng Lu; Yukihiro Yoshida; Kazuyoshi Kanamori; Hiroshi Kitagawa;

Robust Proton Conduction against Mechanical Stress in Flexible Free‐Standing Membrane Composed of Two‐Dimensional Coordination Polymer

Abstract

AbstractIntroduction of mechanical flexibility into proton‐conducting coordination polymers (CPs) is in high demand for future protonic applications such as fuel cells and hydrogen sensors. Although such mechanical properties have been primarily investigated in one‐dimensional (1D) CPs, in this study, we successfully fabricated highly flexible free‐standing CP membranes with a high surface‐to‐volume ratio, which is beneficial for enhanced performance in the aforementioned applications. We fabricated a layered CP, Cu2(NiTCPP) (H4(H2TCPP); 5,10,15,20‐tetrakis(4‐carboxyphenyl) porphyrin), in which a two‐dimensional (2D) square grid sheet composed of tetradentate nickel porphyrins and paddlewheel‐type copper dimers was connected to each other by weak van der Waals forces. The mechanical flexibility was evaluated by bending and tensile tests. The flexural and Young's moduli of the membrane were significantly higher than those of conventional Nafion membranes. Electrochemical impedance spectroscopy analysis revealed that the in‐plane proton conductivity of the membrane was maintained even under applied bending stress. Because the X‐ray diffraction analysis indicates that the proton‐conducting pathway through the hydrogen bonding network remains intact during the bending operation, our present study provides a promising strategy for the fabrication of new and advanced 2D CPs without using substrates or additional polymers for protonic devices.

Related Organizations
Keywords

Mechanical Flexibility, Free-Standing Membrane, Proton Conductivity, High Orientation, Porous Coordination Polymer (PCP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!