
doi: 10.22178/pos.105-30
Integrating machine learning (ML) with the Internet of Things (IoT) reveals hidden patterns and insights from extensive sensor data, enabling IoT to become omnipresent and make intelligent decisions without explicit programming. ML is essential for IoT to meet the future needs of businesses, governments, and individuals. IoT aims to sense its environment and automate decision-making through intelligent methods, emulating human decisions. This paper reviews and categorises existing literature on ML-enabled IoT from three perspectives: data, applications, and industries. We examine advanced methods and applications by reviewing various sources, emphasising how ML and IoT work together to create more innovative environments. We also discuss emerging trends such as the Internet of Behavior, pandemic management, autonomous vehicles, edge and fog computing, and lightweight deep learning. Furthermore, we identify challenges to IoT in four categories: technological, individual, business, and societal. This paper aims to leverage IoT opportunities and address challenges for a more prosperous and sustainable future.
Internet of Things (IoT); Machine Learning (ML); Sensor Data; Intelligent Decision-Making; Data Analysis; Smart Environments; Internet of Behavior, Technics, LСC Subject Category: T58.5-58.64
Internet of Things (IoT); Machine Learning (ML); Sensor Data; Intelligent Decision-Making; Data Analysis; Smart Environments; Internet of Behavior, Technics, LСC Subject Category: T58.5-58.64
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
