Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Траектория наукиarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Траектория науки
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

IoT Revolutionized: How Machine Learning is Transforming Data, Applications, and Industries

Authors: Akintayo, Taiwo Abdulahi; Olusola, Raphael Aduramimo; Enabulele, Ewemade Cornelius; Oyesanya, Ayodele; Olanrewaju, Samuel Ayanwunmi; Celestina, Moyosore Owoeye; Sulaimon, Balogun Oluwaseyi; +4 Authors

IoT Revolutionized: How Machine Learning is Transforming Data, Applications, and Industries

Abstract

Integrating machine learning (ML) with the Internet of Things (IoT) reveals hidden patterns and insights from extensive sensor data, enabling IoT to become omnipresent and make intelligent decisions without explicit programming. ML is essential for IoT to meet the future needs of businesses, governments, and individuals. IoT aims to sense its environment and automate decision-making through intelligent methods, emulating human decisions. This paper reviews and categorises existing literature on ML-enabled IoT from three perspectives: data, applications, and industries. We examine advanced methods and applications by reviewing various sources, emphasising how ML and IoT work together to create more innovative environments. We also discuss emerging trends such as the Internet of Behavior, pandemic management, autonomous vehicles, edge and fog computing, and lightweight deep learning. Furthermore, we identify challenges to IoT in four categories: technological, individual, business, and societal. This paper aims to leverage IoT opportunities and address challenges for a more prosperous and sustainable future.

Keywords

Internet of Things (IoT); Machine Learning (ML); Sensor Data; Intelligent Decision-Making; Data Analysis; Smart Environments; Internet of Behavior, Technics, LСC Subject Category: T58.5-58.64

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold