
This paper considers identification problems for output-error moving average systems with colored noises. The basic idea is, by the auxiliary model identification principle, to replace the unknown noise-free outputs and unmeasurable noise terms in the information vector with the outputs of an auxiliary model and the estimated residuals, and to present an auxiliary model based extended stochastic gradient algorithm. The algorithm proposed has significant computational advantage over existing least squares identification algorithms. The simulation example indicates that the parameter estimation errors become small as the data length increases.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
