Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Communicationsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Communications
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Communications
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Communications
Article . 2021
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Workload aware autonomic resource management scheme using grey wolf optimization in cloud environment

Authors: Bhupesh Kumar Dewangan; Amit Agarwal 0002; Tanupriya Choudhury; Ashutosh Pasricha;

Workload aware autonomic resource management scheme using grey wolf optimization in cloud environment

Abstract

Abstract Autonomic resource management on cloud is a challenging task because of its huge heterogeneous and distributed environment. There are several service providers in the cloud to provide a different set of cloud services. These services are delivered to the clients through a cloud network, and it needs to satisfy the Quality‐of‐Service (QoS) requirements of users without affecting the Service Level Agreements. It can only manage through autonomic cloud resource managing frameworks. However, most of the existing frameworks are not much efficient for managing cloud resources because of the varied applications and environments of the cloud. To defeat such problems, this paper proposed the workload aware Autonomic Resource Management Scheme (WARMS) in the cloud environment. Initially, the clustering of cloud workloads is achieved by Modified Density Peak Clustering algorithm. Further, the workload scheduling process is done using fuzzy logic for cloud resource availability. The autonomic system uses Grey Wolf Optimization for virtual machine deployment to achieve optimal resource provisioning. The WARMS system focused on reducing the Service Level Agreement violation, cost, energy usage, and time, and providing better QoS. The simulation results of WARMS shows the system delivering the cloud services more efficiently by the minimized rate of violation and enhanced QoS.

Keywords

Internet software, Telecommunication, Optimisation techniques, Other topics in statistics, TK5101-6720

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
gold