
AbstractEmbedded systems, including the Internet of things (IoT), play a crucial role in the functioning of critical infrastructure. However, these devices face significant challenges such as memory footprint, technical challenges, privacy concerns, performance trade-offs and vulnerability to cyber-attacks. One approach to address these concerns is minimising computational overhead and adopting lightweight intrusion detection techniques. In this study, we propose a highly efficient model called optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in IoT environments. The proposed OCFSDA model incorporates feature selection, data compression, pruning, and deparameterization. We deployed the model on a Raspberry Pi4 using the TFLite interpreter by leveraging optimisation and inferencing with semi-supervised learning. Using the MQTT-IoT-IDS2020 and CIC-IDS2017 datasets, our experimental results demonstrate a remarkable reduction in the computation cost in terms of time and memory use. Notably, the model achieved an overall average accuracies of 99% and 97%, along with comparable performance on other important metrics such as precision, recall, and F1-score. Moreover, the model accomplished the classification tasks within 0.30 and 0.12 s using only 2KB of memory.
Feature selection, Intrusion detection, Computational cost, Network security, Systems security, Internet of Things (IoT)
Feature selection, Intrusion detection, Computational cost, Network security, Systems security, Internet of Things (IoT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
