
The fields of soft and bio-inspired robotics promise to imbue synthetic systems with capabilities found in the natural world. However, many of these biological capabilities are yet to be realized. For example, vines in nature direct growth via localized responses embedded in the cells of vine body, allowing an organism without a central brain to successfully search for resources (e.g., light). Yet to date, vine-inspired robots have yet to show such localized embedded responsiveness. Here we present a vine-inspired robotic device with material-level responses embedded in its skin and capable of growing and steering toward either a light or heat stimulus. We present basic modeling of the concept, design details, and experimental results showing its behavior in response to infrared (IR) and visible light. Our simple design concept advances the capabilities of bio-inspired robots and lays the foundation for future growing robots that are capable of seeking light or heat, yet are extremely simple and low-cost. Potential applications include solar tracking, and in the future, firefighting smoldering fires. We envision using similar robots to find hot spots in hard-to-access environments, allowing us to put out potentially long-burning fires faster.
FOS: Computer and information sciences, Computer Science - Robotics, Robotics (cs.RO)
FOS: Computer and information sciences, Computer Science - Robotics, Robotics (cs.RO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
