Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Technology Audit and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://journals.uran.ua/tarp/a...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.15587/2312-...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental study and modeling of partial discharge detection system

Authors: Trotsenko, Yevgeniy; Brzhezitsky, Volodymyr; Protsenko, Olexandr; Chumack, Vadim; Haran, Yaroslav;

Experimental study and modeling of partial discharge detection system

Abstract

The object of research is an electrical system for detecting partial discharges in a sample of high voltage equipment insulation. To evaluate the insulation state of electrical equipment, various methods for detecting partial discharges have been developed and continue to be improved. The role of modeling, virtual experiment and virtual laboratory lessons has recently increased in all areas of engineering. At the same time, some aspects of modeling the electrical systems for partial discharges detection are practically not studied sufficiently. Modeling is an important additional kind of practical training for a further work with measuring and testing equipment in professional activity. The aim of research is determination of the possibility of using an equivalent circuit simulation model in the research and educational process as an analogue of a system for measuring the characteristics of partial discharges. To measure the characteristics of partial discharges in samples of high-voltage insulation, a special experimental test stand was assembled. The stand allows testing the physical model of insulation by applying alternating current high voltage. To visualize individual partial discharge pulses on an oscilloscope, a high-pass filter was designed and assembled that suppresses the 50 Hz main frequency voltage, and is a 4th order Butterworth filter. The oscillogram of partial discharge pulses that occur near a surface of high-voltage electrode in an insulating gap with an electrical cardboard was obtained. It has been experimentally established that partial discharge impulses of different amplitudes arise in the insulating gap with an explicit polarity effect. The experimental oscillogram was adopted as a sample, to which the oscillogram should approach in the simulation. The electrical equivalent circuit for insulation is represented by a traditional three-capacitive equivalent circuit for a dielectric with a gas cavity. As a result of the research it was established that it is possible to obtain results close to those observed in the physical experiment. The possibility of modeling partial discharges in a dielectric in the presence of two or more gas cavities is shown.

Keywords

схемотехнічне моделювання; частковий розряд; фільтр верхніх частот; фільтр Баттерворта., схемотехническое моделирование; частичный разряд; фильтр верхних частот; фильтр Баттерворта., circuit simulation; partial discharge; high-pass filter; Butterworth filter, UDC 621.315.6, УДК 621.315.6

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold