
We present a distributed and decentralized algorithm for graph signal inpainting. The previous work obtained a closed-form solution with matrix inversion. In this paper, we ease the computation by using a distributed algorithm, which solves graph signal inpainting by restricting each node to communicate only with its local nodes. We show that the solution of the distributed algorithm converges to the closed-form solution with the corresponding convergence speed. Experiments on online blog classification and temperature prediction suggest that the convergence speed of the proposed distributed algorithm is competitive with that of the centralized algorithm, especially when a graph tends to be regular. Since a distributed algorithm does not require to collect data to a center, it is more practical and efficient.
90699 Electrical and Electronic Engineering not elsewhere classified, FOS: Electrical engineering, electronic engineering, information engineering, Computer Engineering
90699 Electrical and Electronic Engineering not elsewhere classified, FOS: Electrical engineering, electronic engineering, information engineering, Computer Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
